Recent Changes

Wednesday, March 9

  1. page Satelites edited la. ... satélite comercial mexicano mNN M M M M M exicano que lanza La función de los satéli…
    la.
    ...
    satélite comercial mexicanomNN M M M M M exicano que lanza
    La función de los satélites de comunicación será muy importante, durante los siguientes 10 años, principalmente en áreas como: Internet, Educación a distancia, Radiodifusión (Televisión comercial, Televisión corporativa, Televisión Directa al Hogar, y Televisión por cable), Telefonía (Internacional, rural), y Telemedicina. Por ejemplo, en el caso del sector educativo, desde hace 5 años Edusat desarrolla programas de alfabetización a distancia en todo el país, cubriendo todos los niveles. También gracias a la transmisión vía satélite, el Instituto Tecnológico y de Estudios Superiores de Monterrey ha desarrollado el concepto de "Universidad Virtual", consolidándose así como líder en Latinoamérica en el área de educación a distancia.
    Según Satmex - empresa privada que ganó la concesión para la operación de los satélites mexicanos en 1997 y está integrada por Telefónica Autrey, Loral Space & Communications, y el gobierno mexicano - los satélites artificiales de comunicación serán el medio más eficiente y rentable para apoyar el crecimiento de la infraestructura de comunicaciones que requieren los países en desarrollo y se consolidarán como un aliado en la actividad económica de los países industrializados.
    (view changes)

Thursday, August 13

  1. page Satelites edited Satélites concepto satélite se puede referir a dos cosas: un satélite natural es un cuerpo celest…
    Satélites
    concepto satélite se puede referir a dos cosas: un satélite natural es un cuerpo celeste que orbita un planeta u otro cuerpo más pequeño, al que se denomina "primario"; no tiene luz propia, tal como los planetas. Por ejemplo la Luna, que es un satélite, gira en torno al planeta Tierra.
    La definición antes descrita es para un satélite natural, ya que para los satélites artificiales existe otra. Los satélites artificiales son aquellos objetos puestos en órbita mediante la intervención humana, creados por el hombre; es un vehículo que puede o no contener tripulación, el cual es colocado en órbita alrededor de un astro, con el objetivo de adquirir información de éste y transmitirla.
    En cuanto a los satélites naturales, estos son más pequeños que el astro al que rodean, y son atraídos recíprocamente por fuerza de gravedad. Por lo general, aquellos satélites que giran en torno a planetas principales se les denominan lunas, pues se les asocia al satélite de la Tierra, la cuna.
    Dentro del Sistema Solar existe una gran cantidad de satélites naturales y todavía no se sabe con exactitud la cantidad. La Tierra posee tan sólo uno, pero existen otros planetas que pueden llegar a tener más de 60 lunas, por ejemplo Júpiter tiene 63. Sin embargo existen planetas como Venus y Mercurio que carecen de satélites, no obstante no sería extraño que esta aseveración cambiara pues hasta estos días se siguen descubriendo más satélites en el Sistema Solar. Se han descubierto aproximadamente 130 satélites, pero lo más probable es que en un futuro próximo se encuentren satélites de mayor tamaño.
    Los satélites naturales pueden tener diferentes formas, pese a que la Luna de la Tierra se vea perfectamente redonda. Los planetas no poseen una forma perfecta, son ovalados, siendo más anchos en la zona ecuatorial, esto, además de la fuerza de atracción del sol hace que el movimiento de traslación de los satélites sea más complejo. A este movimiento se le conoce como movimiento perturbado.
    Por otro lado los satélites artificiales, al ser creados por el hombre, y a diferencia de los naturales, son colocados arbitrariamente en una órbita para que gire en torno a un astro determinado. Por esta razón, es posible modificar su trayectoria. Los satélites artificiales surgieron en la gran carrera espacial. El primero fue el satélite creado por los rusos, Sputnik, clocado en la órbita terrestre el 4 de octubre de 1957. Desde aquel entonces, los satélites artificiales no han cesado, se han ido creando más, siendo estos cada vez más complejos y específicos.
    Los satélites artificiales resultaron ser una coyuntura para la historia de la astronomía. Un aparato que está otorgando constantemente información de un astro en particular sin necesidad de haber una persona en la zona en cuestión. Si lo pensamos con atención el concepto es una verdadera maravilla y gran logro de la humanidad.
    Satélites Naturales
    Se denomina satélite natural a cualquier objeto que orbita alrededor de un planeta. Generalmente el satélite es mucho más pequeño y acompaña al planeta en su translación alrededor de la Estrella que orbita. El término satélite natural se contrapone al de satélite artificial, siendo este último, un objeto que gira en torno a la Tierra, la Luna o algunos planetas y que ha sido fabricado por el hombre.
    En el caso de la Luna, que tiene una masa aproximada a 1/81 de la masa de la Tierra, podría considerarse como un sistema de dos planetas que orbitan juntos (sistema binario de planetas). Tal es el caso de Plutón y su satélite Caronte. Si dos objetos poseen masas similares, se suele hablar de sistema binario en lugar de un objeto primario y un satélite. El criterio habitual para considerar un objeto como satélite es que el centro de masas del sistema formado por los dos objetos esté dentro del objeto primario. El punto más elevado de la órbita del satélite se conoce como apoápside.
    En el Sistema Solar, los nombres de los satélites son personajes de la mitología, excepto los de Urano que son personajes de diferentes obras de William Shakespeare.
    En el Sistema Solar se puede clasificar los satélites según:
    Satélites pastores: Cuando mantienen algún anillo de Júpiter, Saturno, Urano o Neptuno en su lugar.
    Satélites troyanos: Cuando un planeta y un satélite importante tienen en los puntos de LaGrange L4 y L5 otros satélites.
    Satélites coorbitales: Cuando giran en la misma órbita. Los satélites troyanos son coorbitales, pero también lo son los satélites de Saturno Jano y Epimeteo que distan en sus órbitas menos de su tamaño y en vez de chocar intercambian sus órbitas.
    Satélites asteroidales: Algunos asteroides tienen satélites a su alrededor como (243) Ida y su satélite Dactyl. El 10 de agosto de 2005 se anunció el descubrimiento de un asteroide (87) Silvia que tiene dos satélites girando a su alrededor, Rómulo y Remo.1 Rómulo, el primer satélite, se descubrió el 18 de febrero de 2001 en el telescopio W. M. Keck II de 10 metros en Mauna Kea. Tiene 18 km de diámetro y su órbita, a una distancia de 1370 km de Silvia, tarda en completarse 87,6 horas. Remo, el segundo satélite, tiene 7 km de diámetro y gira a una distancia de 710 km, tardando 33 horas en completar una órbita alrededor de Silvia. El satélite de La Tierra es la Luna.
    Puesto que todos los satélites naturales siguen su órbita debido a la fuerza de gravedad, el movimiento del objeto primario también se ve afectado por el satélite. Este fenómeno permitió en algunos casos el descubrimiento de planetas extrasolares.
    Número de Satélites de los Planetas
    Número de Satélites
    |||| Planeta
    ||
    Tierra
    1
    Marte
    2
    Júpiter
    60
    Saturno
    31
    Urano
    22
    Neptuno
    11
    Plutón
    1
    Las lunas de los planetas se mueven alrededor del mismo soportando diversas fuerzas; si los planetas fueran esferas perfectas, se desplazarían en órbitas perfectamente elípticas. Como los planetas están deformados a causa de su rotación, presentan un abultamiento ecuatorial. Este efecto, conjuntamente con las fuerzas de atracción de otras lunas del mismo planeta y la acción gravitatoria del Sol, determinan que cada satélite posea un movimiento complejo denominado movimiento perturbado.
    Respecto al origen de estos astros se han sugerido diferentes teorías: (a) se formaron junto con el planeta principal; (b) se desprendieron del planeta principal a lo largo de su evolución; o bien (c) se trata de un cuerpo capturado por el planeta principal (por ejemplo Febe en Saturno, o bien Fobos y Deimos en Marte).
    Como también se ha verificado que existen asteroides que tienen su propia luna, por ejemplo, Herculina, un planetita de 217 km de diámetro con una luna de apenas 50 km. Hay quienes sospechan que el propio Plutón y su luna, son en realidad dos asteroides bastante grandes muy alejados del resto, en los confines del Sistema Solar.
    El análisis detallado de las fotografías y los datos astrofísicos enviados por naves espaciales, han mostrado que los satélites son cuerpos opacos y sólidos, muy diferentes unos de otros. Algunos de ellos son tan grandes como el planeta Mercurio.
    Excepto nuestra luna, los satélites planetarios no son visibles a simple vista y sólo las cuatro mayores lunas de Júpiter, cuyos nombres son Europa, Io, Calixto y Ganímedes, se pueden observar a través de binoculares o con un pequeño telescopio. Los restantes satélites precisan de poderosos instrumentos para ser detectados.
    {Lunas.jpg}
    Satélites Artificiales
    Un satélite artificial es una nave espacial fabricada en la Tierra y enviada en un vehículo de lanzamiento, un tipo de cohete que envía una carga útil al espacio exterior. Los satélites artificiales pueden orbitar alrededor de lunas, cometas, asteroides, planetas, estrellas o incluso galaxias. Tras su vida útil, los satélites artificiales pueden quedar orbitando como basura espacial.
    Cualquiera de los objetos puestos en órbita alrededor de la Tierra con gran variedad de fines, científicos, tecnológicos y militares. El primer satélite artificial, el Sputnik 1, fue lanzado por la Unión Soviética el 4 de octubre de 1957. El primer satélite de Estados Unidos fue el Explorer 1, lanzado el 31 de enero de 1958, y resultó útil para el descubrimiento de los cinturones de radiación de la Tierra. En los años siguientes se lanzaron varios cientos de satélites, la mayor parte desde Estados Unidos y desde la antigua URSS, hasta 1983, año en que la Agencia Espacial Europea comenzó sus lanzamientos desde un centro espacial en la Guayana Francesa. El 27 de agosto de 1989 se utilizó un cohete privado para lanzar un satélite por primera vez. El cohete, construido y lanzado por una compañía de Estados Unidos, colocó un satélite inglés de difusión televisiva en órbita geosíncrona.
    En la actualidad hay satélites de comunicaciones, navegación, militares, meteorológicos, de estudio de recursos terrestres y científicos. Estos últimos se utilizan para estudiar la alta atmósfera, el firmamento, o para probar alguna ley física. A finales de 1986, de los más de 3.500 satélites que se han lanzado desde el Sputnik, unos 300 estaban operativos. La mayor parte de ellos son satélites de comunicación, utilizados para la comunicación telefónica y la transmisión de datos digitales e imágenes de televisión. Los satélites meteorológicos fotografían la Tierra a intervalos regulares en la luz visible y en el infrarrojo, y proporcionan datos a las estaciones meteorológicas de la Tierra, para la predicción de las condiciones atmosféricas de todo el mundo. Los satélites de navegación permiten determinar posiciones en el mar con un error límite de menos de 10 m, y también ayudan a la navegación en la localización de hielos y trazado de corrientes oceánicas. El SARSAT (Sistema de satélites de búsqueda y rescate) controla señales de socorro de barcos y aeronaves mediante una red de tres satélites estadounidenses (NOAA-9,10,11) y otros dos que fueron lanzados por la antigua Unión Soviética.
    Los instrumentos astronómicos colocados a bordo de los satélites se utilizan para llevar a cabo observaciones imposibles de realizar desde la Tierra debido a la absorción de radiación de la atmósfera. Con el empleo de detectores y telescopios de rayos X se han descubierto un gran número de fuentes de rayos X. También es posible la observación de la radiación ultravioleta y la detección de los rayos gamma emitidos por los objetos celestes. En 1983, con el satélite IRAS de astronomía infrarroja, los astrónomos hicieron las primeras observaciones detalladas del núcleo de nuestra galaxia.
    Los satélites artificiales se alimentan mediante células solares, mediante baterías que se cargan con las células solares y, en algunos casos, mediante generadores nucleares, en los que el calor producido por la desintegración de los radioisótopos se convierte en energía eléctrica. Los satélites están equipados con transmisores de radio para enviar datos, con radiorreceptores y circuitos electrónicos de almacenamiento de datos, y con equipos de control como sistemas de radar y de guía para el seguimiento de estrellas.
    Los satélites se colocan en órbita mediante cohetes de etapas múltiples, también denominados lanzadores. Para ello, la NASA desarrolló el proyecto Lanzadera Espacial y la Agencia Espacial Europea el programa Ariane. En los últimos tiempos la República Popular de China ha desarrollado el lanzador Larga Marcha, mucho más barato que cualquiera de los anteriores; el tiempo dará cuenta de su fiabilidad.
    En los últimos años, la tecnología satelital ha recobrado gran importancia en el terreno de las comunicaciones. El desarrollo de la fibra óptica parecía que iba a obstaculizar la evolución de los satélites artificiales de comunicación, como consecuencia de sus características de transmisión (Velocidad, Capacidad, Durabilidad…), pero pocos pensaron en los diversos retos que debía enfrentar esta tecnología de comunicación (geográficos, climáticos, y sobretodo financieros).
    Para cumplir el propósito de ampliar las comunicaciones, integrando todos los rincones de la tierra, la exploración terrestre no ha sido suficiente. La fibra óptica ha proporcionado grandes ventajas en materia de comunicaciones, pero los altos costos de inversión para su desarrollo se han convertido en una limitante muy importante. Por tal motivo los satélites artificiales de comunicación aún se presentan como una buena opción. Relativamente los costos de inversión son menores, y el alcance es mayor.
    Los satélites artificiales geoestacionarios posicionados sobre el ecuador aproximadamente a 36,000 Km de la superficie terrestre, son idóneos para la comunicación en casi todos los puntos de la tierra. En 1957 se lanzó el primer satélite artificial Sputnik I de
    la.
    de
    la entonces
    La función de los satélites de comunicación será muy importante, durante los siguientes 10 años, principalmente en áreas como: Internet, Educación a distancia, Radiodifusión (Televisión comercial, Televisión corporativa, Televisión Directa al Hogar, y Televisión por cable), Telefonía (Internacional, rural), y Telemedicina. Por ejemplo, en el caso del sector educativo, desde hace 5 años Edusat desarrolla programas de alfabetización a distancia en todo el país, cubriendo todos los niveles. También gracias a la transmisión vía satélite, el Instituto Tecnológico y de Estudios Superiores de Monterrey ha desarrollado el concepto de "Universidad Virtual", consolidándose así como líder en Latinoamérica en el área de educación a distancia.
    Según Satmex - empresa privada que ganó la concesión para la operación de los satélites mexicanos en 1997 y está integrada por Telefónica Autrey, Loral Space & Communications, y el gobierno mexicano - los satélites artificiales de comunicación serán el medio más eficiente y rentable para apoyar el crecimiento de la infraestructura de comunicaciones que requieren los países en desarrollo y se consolidarán como un aliado en la actividad económica de los países industrializados.
    (view changes)

Monday, June 22

  1. page Satelites edited Satélites El concepto concepto satélite se La definición antes descrita es para un satélite na…
    Satélites
    El conceptoconcepto satélite se
    La definición antes descrita es para un satélite natural, ya que para los satélites artificiales existe otra. Los satélites artificiales son aquellos objetos puestos en órbita mediante la intervención humana, creados por el hombre; es un vehículo que puede o no contener tripulación, el cual es colocado en órbita alrededor de un astro, con el objetivo de adquirir información de éste y transmitirla.
    En cuanto a los satélites naturales, estos son más pequeños que el astro al que rodean, y son atraídos recíprocamente por fuerza de gravedad. Por lo general, aquellos satélites que giran en torno a planetas principales se les denominan lunas, pues se les asocia al satélite de la Tierra, la cuna.
    (view changes)

Tuesday, November 26

  1. page Satelites edited ... El concepto satélite se puede referir a dos cosas: un satélite natural es un cuerpo celeste qu…
    ...
    El concepto satélite se puede referir a dos cosas: un satélite natural es un cuerpo celeste que orbita un planeta u otro cuerpo más pequeño, al que se denomina "primario"; no tiene luz propia, tal como los planetas. Por ejemplo la Luna, que es un satélite, gira en torno al planeta Tierra.
    La definición antes descrita es para un satélite natural, ya que para los satélites artificiales existe otra. Los satélites artificiales son aquellos objetos puestos en órbita mediante la intervención humana, creados por el hombre; es un vehículo que puede o no contener tripulación, el cual es colocado en órbita alrededor de un astro, con el objetivo de adquirir información de éste y transmitirla.
    ...
    Tierra, la Luna.cuna.
    Dentro del Sistema Solar existe una gran cantidad de satélites naturales y todavía no se sabe con exactitud la cantidad. La Tierra posee tan sólo uno, pero existen otros planetas que pueden llegar a tener más de 60 lunas, por ejemplo Júpiter tiene 63. Sin embargo existen planetas como Venus y Mercurio que carecen de satélites, no obstante no sería extraño que esta aseveración cambiara pues hasta estos días se siguen descubriendo más satélites en el Sistema Solar. Se han descubierto aproximadamente 130 satélites, pero lo más probable es que en un futuro próximo se encuentren satélites de mayor tamaño.
    Los satélites naturales pueden tener diferentes formas, pese a que la Luna de la Tierra se vea perfectamente redonda. Los planetas no poseen una forma perfecta, son ovalados, siendo más anchos en la zona ecuatorial, esto, además de la fuerza de atracción del sol hace que el movimiento de traslación de los satélites sea más complejo. A este movimiento se le conoce como movimiento perturbado.
    (view changes)

Sunday, September 1

Sunday, December 11

  1. page Bienvenido edited Bienvenidos El motivo de esta wiki es el de difundir informacion con respecto a temas del univ…

    Bienvenidos
    El motivo de esta wiki es el de difundir informacion con respecto a temas del universo, y todo lo que rodea a este planeta...
    (view changes)
    6:59 pm
  2. page Satelites edited Satélites El concepto satélite se puede referir a dos cosas: un satélite natural es un cuerpo cel…
    Satélites
    El concepto satélite se puede referir a dos cosas: un satélite natural es un cuerpo celeste que orbita un planeta u otro cuerpo más pequeño, al que se denomina "primario"; no tiene luz propia, tal como los planetas. Por ejemplo la Luna, que es un satélite, gira en torno al planeta Tierra.
    La definición antes descrita es para un satélite natural, ya que para los satélites artificiales existe otra. Los satélites artificiales son aquellos objetos puestos en órbita mediante la intervención humana, creados por el hombre; es un vehículo que puede o no contener tripulación, el cual es colocado en órbita alrededor de un astro, con el objetivo de adquirir información de éste y transmitirla.
    En cuanto a los satélites naturales, estos son más pequeños que el astro al que rodean, y son atraídos recíprocamente por fuerza de gravedad. Por lo general, aquellos satélites que giran en torno a planetas principales se les denominan lunas, pues se les asocia al satélite de la Tierra, la Luna.
    Dentro del Sistema Solar existe una gran cantidad de satélites naturales y todavía no se sabe con exactitud la cantidad. La Tierra posee tan sólo uno, pero existen otros planetas que pueden llegar a tener más de 60 lunas, por ejemplo Júpiter tiene 63. Sin embargo existen planetas como Venus y Mercurio que carecen de satélites, no obstante no sería extraño que esta aseveración cambiara pues hasta estos días se siguen descubriendo más satélites en el Sistema Solar. Se han descubierto aproximadamente 130 satélites, pero lo más probable es que en un futuro próximo se encuentren satélites de mayor tamaño.
    Los satélites naturales pueden tener diferentes formas, pese a que la Luna de la Tierra se vea perfectamente redonda. Los planetas no poseen una forma perfecta, son ovalados, siendo más anchos en la zona ecuatorial, esto, además de la fuerza de atracción del sol hace que el movimiento de traslación de los satélites sea más complejo. A este movimiento se le conoce como movimiento perturbado.
    Por otro lado los satélites artificiales, al ser creados por el hombre, y a diferencia de los naturales, son colocados arbitrariamente en una órbita para que gire en torno a un astro determinado. Por esta razón, es posible modificar su trayectoria. Los satélites artificiales surgieron en la gran carrera espacial. El primero fue el satélite creado por los rusos, Sputnik, clocado en la órbita terrestre el 4 de octubre de 1957. Desde aquel entonces, los satélites artificiales no han cesado, se han ido creando más, siendo estos cada vez más complejos y específicos.
    Los satélites artificiales resultaron ser una coyuntura para la historia de la astronomía. Un aparato que está otorgando constantemente información de un astro en particular sin necesidad de haber una persona en la zona en cuestión. Si lo pensamos con atención el concepto es una verdadera maravilla y gran logro de la humanidad.
    Satélites Naturales
    Se denomina satélite natural a cualquier objeto que orbita alrededor de un planeta. Generalmente el satélite es mucho más pequeño y acompaña al planeta en su translación alrededor de la Estrella que orbita. El término satélite natural se contrapone al de satélite artificial, siendo este último, un objeto que gira en torno a la Tierra, la Luna o algunos planetas y que ha sido fabricado por el hombre.
    En el caso de la Luna, que tiene una masa aproximada a 1/81 de la masa de la Tierra, podría considerarse como un sistema de dos planetas que orbitan juntos (sistema binario de planetas). Tal es el caso de Plutón y su satélite Caronte. Si dos objetos poseen masas similares, se suele hablar de sistema binario en lugar de un objeto primario y un satélite. El criterio habitual para considerar un objeto como satélite es que el centro de masas del sistema formado por los dos objetos esté dentro del objeto primario. El punto más elevado de la órbita del satélite se conoce como apoápside.
    En el Sistema Solar, los nombres de los satélites son personajes de la mitología, excepto los de Urano que son personajes de diferentes obras de William Shakespeare.
    En el Sistema Solar se puede clasificar los satélites según:
    Satélites pastores: Cuando mantienen algún anillo de Júpiter, Saturno, Urano o Neptuno en su lugar.
    Satélites troyanos: Cuando un planeta y un satélite importante tienen en los puntos de LaGrange L4 y L5 otros satélites.
    Satélites coorbitales: Cuando giran en la misma órbita. Los satélites troyanos son coorbitales, pero también lo son los satélites de Saturno Jano y Epimeteo que distan en sus órbitas menos de su tamaño y en vez de chocar intercambian sus órbitas.
    Satélites asteroidales: Algunos asteroides tienen satélites a su alrededor como (243) Ida y su satélite Dactyl. El 10 de agosto de 2005 se anunció el descubrimiento de un asteroide (87) Silvia que tiene dos satélites girando a su alrededor, Rómulo y Remo.1 Rómulo, el primer satélite, se descubrió el 18 de febrero de 2001 en el telescopio W. M. Keck II de 10 metros en Mauna Kea. Tiene 18 km de diámetro y su órbita, a una distancia de 1370 km de Silvia, tarda en completarse 87,6 horas. Remo, el segundo satélite, tiene 7 km de diámetro y gira a una distancia de 710 km, tardando 33 horas en completar una órbita alrededor de Silvia. El satélite de La Tierra es la Luna.
    Puesto que todos los satélites naturales siguen su órbita debido a la fuerza de gravedad, el movimiento del objeto primario también se ve afectado por el satélite. Este fenómeno permitió en algunos casos el descubrimiento de planetas extrasolares.
    Número de Satélites de los Planetas
    Número de Satélites
    |||| Planeta
    ||
    Tierra
    1
    Marte
    2
    Júpiter
    60
    Saturno
    31
    Urano
    22
    Neptuno
    11
    Plutón
    1
    Las lunas de los planetas se mueven alrededor del mismo soportando diversas fuerzas; si los planetas fueran esferas perfectas, se desplazarían en órbitas perfectamente elípticas. Como los planetas están deformados a causa de su rotación, presentan un abultamiento ecuatorial. Este efecto, conjuntamente con las fuerzas de atracción de otras lunas del mismo planeta y la acción gravitatoria del Sol, determinan que cada satélite posea un movimiento complejo denominado movimiento perturbado.
    Respecto al origen de estos astros se han sugerido diferentes teorías: (a) se formaron junto con el planeta principal; (b) se desprendieron del planeta principal a lo largo de su evolución; o bien (c) se trata de un cuerpo capturado por el planeta principal (por ejemplo Febe en Saturno, o bien Fobos y Deimos en Marte).
    Como también se ha verificado que existen asteroides que tienen su propia luna, por ejemplo, Herculina, un planetita de 217 km de diámetro con una luna de apenas 50 km. Hay quienes sospechan que el propio Plutón y su luna, son en realidad dos asteroides bastante grandes muy alejados del resto, en los confines del Sistema Solar.
    El análisis detallado de las fotografías y los datos astrofísicos enviados por naves espaciales, han mostrado que los satélites son cuerpos opacos y sólidos, muy diferentes unos de otros. Algunos de ellos son tan grandes como el planeta Mercurio.
    Excepto nuestra luna, los satélites planetarios no son visibles a simple vista y sólo las cuatro mayores lunas de Júpiter, cuyos nombres son Europa, Io, Calixto y Ganímedes, se pueden observar a través de binoculares o con un pequeño telescopio. Los restantes satélites precisan de poderosos instrumentos para ser detectados.
    {Lunas.jpg}
    Satélites Artificiales
    Un satélite artificial es una nave espacial fabricada en la Tierra y enviada en un vehículo de lanzamiento, un tipo de cohete que envía una carga útil al espacio exterior. Los satélites artificiales pueden orbitar alrededor de lunas, cometas, asteroides, planetas, estrellas o incluso galaxias. Tras su vida útil, los satélites artificiales pueden quedar orbitando como basura espacial.
    Cualquiera de los objetos puestos en órbita alrededor de la Tierra con gran variedad de fines, científicos, tecnológicos y militares. El primer satélite artificial, el Sputnik 1, fue lanzado por la Unión Soviética el 4 de octubre de 1957. El primer satélite de Estados Unidos fue el Explorer 1, lanzado el 31 de enero de 1958, y resultó útil para el descubrimiento de los cinturones de radiación de la Tierra. En los años siguientes se lanzaron varios cientos de satélites, la mayor parte desde Estados Unidos y desde la antigua URSS, hasta 1983, año en que la Agencia Espacial Europea comenzó sus lanzamientos desde un centro espacial en la Guayana Francesa. El 27 de agosto de 1989 se utilizó un cohete privado para lanzar un satélite por primera vez. El cohete, construido y lanzado por una compañía de Estados Unidos, colocó un satélite inglés de difusión televisiva en órbita geosíncrona.
    En la actualidad hay satélites de comunicaciones, navegación, militares, meteorológicos, de estudio de recursos terrestres y científicos. Estos últimos se utilizan para estudiar la alta atmósfera, el firmamento, o para probar alguna ley física. A finales de 1986, de los más de 3.500 satélites que se han lanzado desde el Sputnik, unos 300 estaban operativos. La mayor parte de ellos son satélites de comunicación, utilizados para la comunicación telefónica y la transmisión de datos digitales e imágenes de televisión. Los satélites meteorológicos fotografían la Tierra a intervalos regulares en la luz visible y en el infrarrojo, y proporcionan datos a las estaciones meteorológicas de la Tierra, para la predicción de las condiciones atmosféricas de todo el mundo. Los satélites de navegación permiten determinar posiciones en el mar con un error límite de menos de 10 m, y también ayudan a la navegación en la localización de hielos y trazado de corrientes oceánicas. El SARSAT (Sistema de satélites de búsqueda y rescate) controla señales de socorro de barcos y aeronaves mediante una red de tres satélites estadounidenses (NOAA-9,10,11) y otros dos que fueron lanzados por la antigua Unión Soviética.
    Los instrumentos astronómicos colocados a bordo de los satélites se utilizan para llevar a cabo observaciones imposibles de realizar desde la Tierra debido a la absorción de radiación de la atmósfera. Con el empleo de detectores y telescopios de rayos X se han descubierto un gran número de fuentes de rayos X. También es posible la observación de la radiación ultravioleta y la detección de los rayos gamma emitidos por los objetos celestes. En 1983, con el satélite IRAS de astronomía infrarroja, los astrónomos hicieron las primeras observaciones detalladas del núcleo de nuestra galaxia.
    Los satélites artificiales se alimentan mediante células solares, mediante baterías que se cargan con las células solares y, en algunos casos, mediante generadores nucleares, en los que el calor producido por la desintegración de los radioisótopos se convierte en energía eléctrica. Los satélites están equipados con transmisores de radio para enviar datos, con radiorreceptores y circuitos electrónicos de almacenamiento de datos, y con equipos de control como sistemas de radar y de guía para el seguimiento de estrellas.
    Los satélites se colocan en órbita mediante cohetes de etapas múltiples, también denominados lanzadores. Para ello, la NASA desarrolló el proyecto Lanzadera Espacial y la Agencia Espacial Europea el programa Ariane. En los últimos tiempos la República Popular de China ha desarrollado el lanzador Larga Marcha, mucho más barato que cualquiera de los anteriores; el tiempo dará cuenta de su fiabilidad.
    En los últimos años, la tecnología satelital ha recobrado gran importancia en el terreno de las comunicaciones. El desarrollo de la fibra óptica parecía que iba a obstaculizar la evolución de los satélites artificiales de comunicación, como consecuencia de sus características de transmisión (Velocidad, Capacidad, Durabilidad…), pero pocos pensaron en los diversos retos que debía enfrentar esta tecnología de comunicación (geográficos, climáticos, y sobretodo financieros).
    Para cumplir el propósito de ampliar las comunicaciones, integrando todos los rincones de la tierra, la exploración terrestre no ha sido suficiente. La fibra óptica ha proporcionado grandes ventajas en materia de comunicaciones, pero los altos costos de inversión para su desarrollo se han convertido en una limitante muy importante. Por tal motivo los satélites artificiales de comunicación aún se presentan como una buena opción. Relativamente los costos de inversión son menores, y el alcance es mayor.
    Los satélites artificiales geoestacionarios posicionados sobre el ecuador aproximadamente a 36,000 Km de la superficie terrestre, son idóneos para la comunicación en casi todos los puntos de la tierra. En 1957 se lanzó el primer satélite artificial Sputnik I de la entonces URSS, 42 años después operan aproximadamente 600 satélites geoesíncronos o geoestacionarios (GEOs). En México se cuenta con tres satélites geoestacionarios: Solidaridad I (1994) y Solidaridad II (1995), que sustituyeron a los satélites Morelos I y Morelos II (1985), y el Satmex 5, primer satélite comercial mexicano que lanza una entidad privada (Satmex) y que proporciona cobertura a casi todo el continente americano.
    La función de los satélites de comunicación será muy importante, durante los siguientes 10 años, principalmente en áreas como: Internet, Educación a distancia, Radiodifusión (Televisión comercial, Televisión corporativa, Televisión Directa al Hogar, y Televisión por cable), Telefonía (Internacional, rural), y Telemedicina. Por ejemplo, en el caso del sector educativo, desde hace 5 años Edusat desarrolla programas de alfabetización a distancia en todo el país, cubriendo todos los niveles. También gracias a la transmisión vía satélite, el Instituto Tecnológico y de Estudios Superiores de Monterrey ha desarrollado el concepto de "Universidad Virtual", consolidándose así como líder en Latinoamérica en el área de educación a distancia.
    Según Satmex - empresa privada que ganó la concesión para la operación de los satélites mexicanos en 1997 y está integrada por Telefónica Autrey, Loral Space & Communications, y el gobierno mexicano - los satélites artificiales de comunicación serán el medio más eficiente y rentable para apoyar el crecimiento de la infraestructura de comunicaciones que requieren los países en desarrollo y se consolidarán como un aliado en la actividad económica de los países industrializados.
    A través de las redes satelitales de órbita baja se desea enlazar a todo el planeta con un menor costo de inversión que cualquier otra tecnología de comunicación. - Los satélites de órbita baja se encuentran a una distancia menor que los satélites de órbita geoestacionaria, en posición perpendicular al ecuador (aproximadamente a una altitud de 900 a 1300 km de la superficie de la tierra) -.
    De acuerdo a las investigaciones de Ana Luz Ruelas, en su texto titulado "México y Estados Unidos en la Revolución Mundial de las Telecomunicaciones", algunos de los proyectos conocidos sobre redes satelitales de órbita baja son los siguientes:
    Proyecto 21 (propiedad de Inmarsat con un costo mayor de 1000 millones de dólares); Iridium (una constelación de 66 satélites con un costo de 3.4 mil millones de dólares, propiedad de 18 empresas de diferentes países encabezados por Motorola); Globalstar (compuesto aproximadamente por 48 satélites con cobertura global y regional en Estados Unidos, y con un costo de 1.8 mil millones de dólares); Odyssey (Una red de 12 satélites con un costo de 1.3 mil millones de dólares, propiedad de un consorcio de manufactura de tecnología aeroespacial); Elipso I y II (comprende aproximadamente a 18 satélites en dos planos para proveer únicamente servicio nacional, su costo es de 180 millones de dólares, y es propiedad de 6 compañías norteamericanas de comunicaciones móviles, manufactureras de electrónica y tecnología inalámbrica, y del banco inglés Barclays). Aries (Una red que integra a 48 satélites de órbita polar en cuatro planos, su costo es de 292 millones de dólares y es propiedad de inversionistas privados y empresas de comunicaciones de Estados Unidos); Teledesic. (Proyecto de comunicaciones que integra a 840 satélites del tamaño de un refrigerador, su costo es de 9 mil millones de dólares, y es propiedad de Craig McCaw, William Gates, McCaw Development y Kinship Partner).
    Prácticamente a principios del siguiente siglo, no habrá punto en la tierra sin la posibilidad de comunicación. Las barreras físicas que apartaban zonas enteras de los cinco continentes, como desiertos, montañas, océanos, selvas y polos glaciares ya no serán un obstáculo para las comunicaciones. Los satélites artificiales proporcionarán cobertura a regiones donde la comunicación por redes terrestres es prácticamente imposible, o sumamente costosa. Por ejemplo La Alianza Global Loral, de la cual forma parte Satmex, repartirá servicios de video que incluyen difusión de televisión, aplicaciones de señal directa al hogar, televisión empresarial, servicios ocasionales, noticias, servicios de Internet, voz y datos. Estos servicios se ofrecerán a lo largo del continente americano y Europa, y durante este año se extenderá su cobertura hacia Asia / pacífico, India, Rusia, el Medio Oriente y Sudáfrica.
    Aunque las transmisiones satelitales también tienen algunas desventajas como las demoras de propagación, la interferencia de radio y microondas, y el debilitamiento de las señales debido a fenómenos metereológicos (lluvias intensas, nieve, y manchas solares), las ventajas son mayores. Por tal motivo, países como Brasil, Francia, India, Japón, China, Australia, Gran Bretaña, Italia, Panamá, México y Argentina, además de los pioneros (Rusia, Estados Unidos y Canadá) cuentan con un sistema satelital de comunicaciones.
    La comunicación a través de satélites ha contribuido a la transformación de dos de las dimensiones humanas: espacio y tiempo. Por tal razón ya no se experimenta asombro ante la difusión de un evento o acontecimiento que puede llegar a cualquier parte del mundo en el momento que sucede. La distancia y el tiempo ya no son limítrofes de la comunicación.
    {Nasa_swift_satellite.jpg}
    Indudablemente la unión de la tecnología satelital y las redes de comunicación terrestres serán uno de los grandes retos del siglo XXI. Su consolidación permitirá el desarrollo de nuevos productos que pueden resultar de gran interés para las sociedades. Es muy probable que en los siguientes años se presencie el surgimiento de un nuevo medio de comunicación que derive de la fusión de tecnologías de comunicación como la televisión, radio, impresos e Internet.
    Bibliografía
    http://html.rincondelvago.com/satelites_2.html
    http://www.monografias.com/trabajos39/satelites-artificiales/satelites-artificiales.shtml
    http://es.wikipedia.org/wiki/Sat%C3%A9lite_artificial
    http://es.wikipedia.org/wiki/Sat%C3%A9lite_natural
    http://es.wikipedia.org/wiki/Sat%C3%A9lite
    http://www.feinstein.com.ar/Lossatelitesnaturales.html
    http://definicion.de/satelite/
    http://www.misrespuestas.com/que-es-un-satelite.html
    http://www.definicionabc.com/general/satelite.php
    http://www.pergaminovirtual.com.ar/definicion/Satelite.html

    (view changes)
    5:58 pm
  3. page Planetas edited Planetas Un planeta es, según la definición adoptada por la Unión Astronómica Internacional el 24…
    Planetas
    Un planeta es, según la definición adoptada por la Unión Astronómica Internacional el 24 de agosto de 2006, un cuerpo celeste que:
    Orbita alrededor de una estrella o remanente de ella.
    Tiene suficiente masa para que su gravedad supere las fuerzas del cuerpo rígido, de manera que asuma una forma en equilibrio hidrostático (prácticamente esférica).
    Ha limpiado la vecindad de su órbita de planetesimales, o lo que es lo mismo tiene dominancia orbital.
    Según la definición mencionada, el Sistema Solar consta de ocho planetas: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno. Plutón, que hasta 2006 se consideraba un planeta, ha pasado a clasificarse como planeta enano, junto a Ceres, también considerado planeta durante algún tiempo, ya que era un referente en la ley de Titius-Bode, y más recientemente considerado como asteroide, y Eris, un objeto transneptuniano similar a Plutón. Ciertamente desde los años 70 existía un amplio debate sobre el concepto de planeta a la luz de los nuevos datos referentes al tamaño de Plutón (menor de lo calculado en un principio), un debate que aumentó en los años siguientes al descubrirse nuevos objetos que podían tener tamaños similares. De esta forma, esta nueva definición de planeta introduce el concepto de planeta enano, que incluye a Ceres, Plutón, Haumea, Makemake y Eris; y tiene la diferencia de definición en (2), ya que no ha despejado la zona local de su órbita y no es un satélite de otro cuerpo.
    Los cuerpos que giran en torno a otras estrellas se denominan generalmente planetas extrasolares o exoplanetas. Las condiciones que han de cumplir para ser considerados como tales son las mismas que señala la definición de planeta para el Sistema Solar, si bien giran en torno a sus respectivas estrellas. Incluyen además una condición más en cuanto al límite superior de su tamaño, que no ha de exceder las 13 masas jovianas y que constituye el umbral de masa que impide la fusión nuclear de deuterio.
    Etimológicamente, la palabra "planeta" proviene del latín planēta, que a su vez deriva del griego πλανήτης ('planētēs' «vagabundo, errante»). Esto se debe a que en la antigüedad, siguiendo la teoría geocéntrica de Aristóteles, se creía que en torno a la Tierra, la cual era considerada el centro del cosmos, giraban el Sol y las cinco errantes o los cinco planetas errantes (Mercurio, Venus, Marte, Júpiter y Saturno), llamadas así por obstinarse a desobedecer la ley del círculo. Es decir, se les consideraba "errantes" debido a que, aparentemente y a simple vista, no trazaban ningún círculo alrededor de la Tierra, a diferencia del Sol.
    Clasificación de los planetas
    Los planetas del Sistema Solar se clasifican conforme a dos criterios: su estructura y su movimiento aparente.
    Según su estructura
    Planetas Rocosos
    Un planeta terrestre, también denominado planeta telúrico o planeta rocoso, es un planeta formado principalmente por silicatos. Los planetas terrestres son sustancialmente diferentes de los planetas gigantes gaseosos, los cuales puede que no tengan una superficie sólida y están constituidos principalmente por gases tales como hidrógeno, helio y agua en diversos estados de agregación. Todos los planetas terrestres tienen aproximadamente la misma estructura: un núcleo metálico, mayoritariamente férreo, y un manto de silicatos que lo rodea. La Luna tiene una composición similar, excepto el núcleo de hierro. Los planetas terrestres tienen cañones, cráteres, montañas y volcanes. Además tienen atmósferas secundarias, procedente de sus procesos geológicos internos, al contrario que los gigantes gaseosos que poseen atmósferas primarias, capturadas directamente de la nebulosa solar original.
    El Sistema Solar tiene cuatro planetas terrestres: Mercurio, Venus, La Tierra y Marte, y un planeta enano en el Cinturón de asteroides, Ceres. Los objetos transneptunianos como Plutón se parecen a los planetas terrestres en que tienen una superficie sólida, pero son mayoritariamente hielo. Desde el punto de vista de estático, algunas grandes lunas del sistema solar también son planetas telúricos en función de que son planetas secundarios y son formaciones rocosas, aun con esto no puede considerarse como tales a todas las lunas rocosas. Durante la formación del Sistema Solar, probablemente hubo más planetas terrestres (planetesimales), pero se fusionaron o fueron destruidos por los cuatro planetas terrestres actuales. Sólo un planeta terrestre, la Tierra, tiene una hidrosfera activa.
    {Terrestrial_planet_size_comparisons.jpg}
    Planetas Gaseosos
    Un gigante gaseoso es un planeta gigante que no está compuesto mayoritariamente de roca u otra materia sólida sino de fluidos; aunque dichos planetas pueden tener un núcleo rocoso o metálico. Se cree que tal núcleo es probablemente necesario para que un gigante gaseoso se forme, pero la mayoría de su masa es en forma de gas, o gas comprimido en estado líquido.
    A diferencia de los planetas rocosos, los gigantes gaseosos no tienen una superficie bien definida. Términos como diámetro, área superficial, volumen, temperatura superficial o densidad superficial pueden referirse a la capa exterior vista desde fuera, por ejemplo desde la Tierra.
    En el Sistema Solar hay cuatro gigantes gaseosos: Júpiter, Saturno, Urano y Neptuno. Estos planetas son conocidos también como los «planetas jovianos».
    Urano y Neptuno han sido considerados por los científicos como una subclase separada de planetas gigantes, gigantes helados, también denominados «planetas uranios», debido a su estructura principalmente compuesta de hielo, roca y gas. Se diferencian de gigantes gaseosos «tradicionales», como Júpiter y Saturno, porque su proporción de hidrógeno y helio es mucho más baja, principalmente por su mayor distancia al Sol.
    Actualmente se conoce la existencia de muchos gigantes gaseosos fuera del Sistema Solar, debido a que la mayoría de los planetas extrasolares conocidos son precisamente de este tipo de planeta.
    Se pude denominar planetas gigantes a un planeta que está compuesto principalmente de hidrógeno y metano y que además no tiene superficie sólida como en los planetas terrestres. En este caso es posible encontrarlos en distintos lugares del Universo.
    {Gas_giants_in_the_solar_system.jpg}
    Plutón, según el acuerdo tomado el día 24 de agosto de 2006 por la Unión Astronómica Internacional sobre una nueva definición de planeta, se le considera dentro de la categoría de planeta enano. Los primeros asteroides descubiertos fueron también denominados temporalmente como planetas, como Ceres, que al igual que otros asteroides llegaron incluso a tener su símbolo planetario, hasta que fue evidente que formaban parte de toda una familia de objetos: el cinturón de asteroides.
    Según sus movimientos en el cielo
    Planetas interiores
    Los planetas interiores también llamados telúricos o terrestres son los cuatro planetas más cercanos al Sol, es decir: Mercurio, Venus, la Tierra y Marte. Son pequeños y de densidad elevada (3-5 g/cm³) formados principalmente por materiales rocosos y metálicos con una estructura interna bien diferenciada y con un tamaño similar. La composición isotópica de estos cuerpos y su densidad variable (mayor en Mercurio y menor en Marte) ofrecen importantes pistas sobre la formación del sistema solar. Los cuatro tienen superficies sólidas con los tres últimos poseyendo también una atmósfera. El estudio comparativo de los cuatro planetas permite estudiar la evolución geológica en un contexto más amplio que el de únicamente la Tierra.
    Más allá de la órbita de Marte se encuentra el cinturón de asteroides una región del Sistema Solar en la que se encuentran abundantes asteroides que no llegaron a formar nunca un planeta.
    Desde el punto de vista astronómico los planetas más interiores Mercurio y Venus poseen elevados ángulos de fase y tanto ellos como Marte presentan un elevado movimiento retrógrado en su movimiento aparente observado desde la Tierra. Los planetas interiores giran lentamente sobre sí mismos (Mercurio 58 días, Venus 243 y 24 horas para la Tierra y Marte). Todos ellos emiten un flujo energético muy inferior al que reciben del Sol estando caracterizados sus espectros por la reflexión de luz solar.
    Planetas exteriores
    Los planetas exteriores, gigantes o gaseosos son aquellos que están situados más allá del cinturón de asteroides, es decir, Júpiter, Saturno, Urano y Neptuno.
    Nótese que, desde la redefinición de planeta de 2006, Plutón ya no se considera planeta, sino planeta enano.
    Sus características más importantes son:
    Son básicamente gaseosos, careciendo de superficie sólida. Urano y Neptuno poseen núcleos internos formados por hielos primigenios a gran presión y temperatura y en estado líquido.
    Giran muy deprisa, periodos de rotación en torno a las 10 hr.
    Disponen de fuertes campos magnéticos.
    Poseen muchos satélites.
    Poseen sistemas de anillos a su alrededor.
    Los planetas gigantes de nuestro sistema solar están formados por profundas atmósferas de hidrógeno y helio que llegan a constituir la mayor parte de la masa de Júpiter y Saturno y que ocupan una tercera parte de los planetas Urano y Neptuno. La mayoría de planetas extrasolares descubiertos hasta la fecha encajan dentro de las características principales de masa y composición de los planetas exteriores de nuestro sistema solar, si bien sus órbitas son mucho más cercanas a su estrella principal hablándose en ocasiones de júpiteres calientes.
    La teoría geocéntrica clasificaba a los planetas según su elongación:
    Los planetas inferiores son aquellos que no se alejaban mucho del Sol (ángulo de elongación limitado por un valor máximo) y que, por tanto, no pueden estar en oposición, como Mercurio y Venus.
    Los planetas superiores, son aquéllos que hacen oposición, y se toma como referencia a la Tierra. Es decir que, todos los que se alejan del Sol. Más allá de la órbita terrestre, son superiores.
    Los planetas interiores y exteriores, parten de un lugar de referencia que no es la Tierra: Es el cinturón de asteroides. Son interiores los planetas: Mercurio, Venus, La Tierra y Marte. Son exteriores: Júpiter, Saturno, Urano y Neptuno.
    Bibliografía
    http://www.astromia.com/solar/planetas.htm
    http://www.astromia.com/solar/rocosos.htm
    http://www.astromia.com/solar/gigantes.htm
    http://es.wikipedia.org/wiki/Planeta_terrestre
    http://www.astromia.com/solar/gigantes.htm
    http://www.macnux.com/portal/secciones-mac-linux-redes/soloastronomia/86-sistema-solar/123-los-planetas-rocosos
    http://es.wikipedia.org/wiki/Gigante_gaseoso
    http://es.wikipedia.org/wiki/Planeta_interior
    http://es.wikipedia.org/wiki/Planeta_exterior
    http://es.wikipedia.org/wiki/Planeta
    http://www.8planetas.com/
    http://www.oarval.org/section3_1sp.htm

    (view changes)
    5:53 pm
  4. page Estrellas edited Estrellas En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que …
    Estrellas
    En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso, podría decirse que se trata de una esfera de plasma, que mantiene su forma gracias a un equilibrio de fuerzas denominado equilibrio hidrostático. El equilibrio se produce esencialmente entre la fuerza de gravedad, que empuja la materia hacia el centro de la estrella, y la presión que hace el plasma hacia fuera, que tal como sucede en un gas, tiende a expandirlo. La presión hacia fuera depende de la temperatura, que en un caso típico como el Sol, se mantiene con el suministro de energía producida en el interior de la estrella. Por ello, el equilibrio se mantendrá esencialmente en las mismas condiciones, en la medida en que la estrella mantenga el ritmo de producción energética. Pero dicho ritmo, como se explica luego, cambia a lo largo del tiempo, generando variaciones en las propiedades físicas globales del astro, que se conocen como evolución de la estrella.
    Las estrellas, al igual que las personas, nacen, crecen y mueren. Nacen a partir de grandes nubes de gas y polvo que se encuentra en el espacio. Después de miles de años este polvo y gas se junta para formar una gran bola que gira. La bola se calienta tanto que comienza a brillar. Ha nacido una estrella.
    Una estrella típica se divide en núcleo, manto y atmósfera. En el núcleo es donde se producen las reacciones nucleares que generan su energía. El manto transporta dicha energía hacia la superficie y según cómo la transporte, por convección o por radiación, se dividirá en dos zonas: radiante y convectiva. Finalmente, la atmósfera es la parte más superficial de las estrellas y la única que es visible. Se divide en cromósfera, fotósfera y corona solar. La atmósfera estelar es la zona más fría de las estrellas y en ellas se producen los fenómenos de eyección de materia. Pero en la corona, supone una excepción a lo dicho ya que la temperatura vuelve a aumentar hasta llegar al millón de grados por lo menos. Pero es una temperatura engañosa. En realidad esta capa es muy poco densa y está formada por partículas ionizadas altamente aceleradas por el campo magnético de la estrella. Sus grandes velocidades les confieren a esas partículas altas temperaturas. A lo largo de su ciclo las estrellas experimentan cambios en el tamaño de las capas e incluso en el orden en que se disponen. En algunas la zona radiante se situará antes que la convectiva y en otras al revés, dependiendo tanto de la masa como de la fase de fusión en que se encuentre. Así mismo, el núcleo también puede modificar sus características y su tamaño a lo largo de la evolución de la estrella. La edad de la mayoría de las estrellas oscila entre 1000 y 10 000 millones de años; aunque algunas estrellas pueden ser incluso más viejas. La estrella observada más antigua, HE 1523-0901, tiene una edad estimada de 13 200 millones de años, muy cercana a la edad estimada para el Universo, de unos 13 700 millones de años.
    Las estrellas brillan por millones de años, luego gastan su combustible y llegan a morir. Las estrellas más grandes (mucho más grandes que el Sol) son las que más brillan, pero también las que menos duran. Cuando mueren se colapsan en segundos y ocurre una gigantesca explosión llamada Supernova. Algunas estrellas menos grandes dejan de brillar y se contraen poco a poco hasta que tienen una gravedad tan grande que la estrella forma un punto muy denso llamado Agujero negro o Black Hole. Los agujeros negros funcionan como si fueran remolinos espaciales, tragan todo lo que se encuentra cerca. Su fuerza es tal que ni siquiera la luz puede escapar. Agujeros negros Son cuerpos con un campo gravitatorio extraordinariamente grande. No puede escapar ninguna radiación electromagnética ni luminosa, por eso son negros. Están rodeados de una "frontera" esférica que permite que la luz entre pero no salga. Hay dos tipos de agujeros negros: cuerpos de alta densidad y poca masa concentrada en un espacio muy pequeño, y cuerpos de densidad baja pero masa muy grande, como pasa en los centros de las galaxias. Si la masa de una estrella es más de dos veces la del Sol, llega un momento en su ciclo en que ni tan solo los neutrones pueden soportar la gravedad. La estrella se colapsa y se convierte en agujero negro. Conos luminosos El científico británico Stephen W. Hawking ha dedicado buena parte de su trabajo al estudio de los agujeros negros. En su libro "Historia del Tiempo" explica cómo, en una estrella que se está colapsando, los conos luminosos que emite empiezan a curvarse en la superficie de la estrella. Al hacerse pequeña, el campo gravitatorio crece y los conos de luz se inclinan cada vez más, hasta que ya no pueden escapar. La luz se apaga y se vuelve negro.
    El Sol
    El Sol es una estrella típica, con una superficie visible llamada fotosfera, una atmósfera saturada de gases calientes y por encima de ellas una corona más difusa y una corriente de partículas denominada viento solar (estelar). Las áreas más frías de la fotosfera, que en el Sol se llaman manchas solares, probablemente se encuentren en otras estrellas comunes; su existencia en algunas grandes estrellas próximas se ha deducido mediante interferometría. La estructura interna del Sol y de otras estrellas no se puede observar de forma directa, pero hay estudios que indican corrientes de convección y una densidad y una temperatura que aumentan hasta alcanzar el núcleo, donde tienen lugar reacciones termonucleares. Las estrellas se componen sobre todo de hidrógeno y helio, con cantidad variable de elementos más pesados.
    {sol.jpg}
    Las estrellas más grandes que se conocen son "supergigantes", con diámetros 400 veces mayores que el del Sol, en tanto que las estrellas conocidas como "enanas blancas" pueden tener diámetros de sólo una centésima del diámetro del Sol. Sin embargo, las estrellas gigantes suelen ser difusas y pueden tener una masa 40 veces mayor que la del Sol, mientras que las enanas blancas son muy densas a pesar de su pequeño tamaño. Puede haber estrellas con una masa 1.000 veces mayor que la del Sol y, a escala menor, bolas de gas caliente demasiado pequeñas para desencadenar reacciones nucleares, denominadas enanas. Un objeto que puede ser de este tipo (una enana marrón) fue observado por primera vez en 1987, y desde entonces se han detectado otros.
    El brillo de las estrellas se describe en términos de magnitud. Las estrellas más brillantes pueden ser hasta 1.000.000 de veces más brillantes que el Sol; las enanas blancas son unas 1.000 veces menos brillantes.
    {betelgeuse-vs-sun.jpg}
    Estrellas Dobles
    Más de la mitad de las estrellas del firmamento son, de hecho, miembros de sistemas de dos estrellas o de sistemas de estrellas múltiples. Algunas estrellas dobles o binarias cercanas aparecen separadas cuando se las observa a través de telescopios, pero a la mayoría se las detecta como dobles sólo por medios espectroscópicos. Las estrellas dobles están compuestas por dos estrellas próximas y que giran en una órbita alrededor de su centro de masa común. Estas estrellas dobles fueron descritas por primera vez en 1803 por el astrónomo británico William Herschel.
    Las binarias espectroscópicas, identificadas por primera vez en 1889, no son separables visualmente por medio del telescopio, pero se pueden reconocer duplicando o ensanchando las líneas del espectro cuando gira el par de estrellas. Cuando uno de los componentes se aleja de la Tierra, el otro se aproxima a ella; las líneas del espectro de la estrella que se aleja se desplazan hacia el rojo, mientras que las de la estrella que avanza se desplazan hacia el violeta.
    Otro tipo de estrella doble es la llamada variable eclipsante. Las estrellas de este tipo están formadas por un componente más brillante y otro más oscuro. Vista desde la Tierra, cuando la órbita es tal que la estrella más pálida eclipsa a la más brillante, la intensidad de la luz que llega desde la estrella oscila con regularidad.
    Las investigaciones han demostrado que una de cada dos o tres estrellas visibles con telescopio de moderado tamaño es una estrella doble. Miles de binarias visuales y muchos cientos de binarias espectroscópicas han sido estudiadas con gran detenimiento. Estas estrellas son la fuente principal de información sobre las masas estelares.
    {estrellas_dobles.jpg}
    Estrellas variables
    Es probable que todas las estrellas, incluido el Sol, varíen ligeramente de brillo con cierta periodicidad. Estas variaciones apenas son mensurables. Sin embargo, algunas estrellas cambian mucho de brillo y se les denomina estrellas variables. Hay muchos tipos. Algunas repiten los ciclos con una precisión casi de reloj; otras son muy irregulares. Algunas necesitan sólo horas o días para volver a un brillo determinado, otras necesitan años. El brillo de estas estrellas puede cambiar de modo casi imperceptible o de forma violenta.
    Las variables más espectaculares son las novas y supernovas. Las novas pueden llegar a brillar hasta 200.000 veces más que el Sol perdiendo quizá una centésima o una milésima del 1% de la masa del Sol a velocidades por encima de los 960 km/s. Algunas novas repiten este proceso cada cierto tiempo hasta que pierden demasiada masa para continuar.
    Aunque las supernovas tienen un nombre similar, son un fenómeno mucho más catastrófico y no periódico. Representan la explosión real de una estrella que a veces brilla durante unos pocos días unos 100.000 millones de veces más que el brillo real del Sol antes de desvanecerse del todo. Dejan tras de sí restos que se expanden y se contemplan como nubes brillantes de gas o nebulosas. Un ejemplo de esto es la nebulosa del Cangrejo, observada por primera vez desde la Tierra como supernova en 1054. A veces también queda un púlsar como vestigio en el centro de los restos. Las novas se presentan con frecuencia en la Vía Láctea, quizá una de cada dos de las que se observan cada año, pero las supernovas son mucho más raras. La supernova más reciente de la Vía Láctea apareció en 1604, aunque hubo una en una galaxia cercana que en 1987 llamó mucho la atención.
    Muchas estrellas variables cambian su brillo porque oscilan, esto es, se expanden y se contraen de forma parecida a un globo. Un tipo importante, llamadas variables cefeidas (por Delta Cefei, de la constelación Cefeo), repiten sus ciclos de brillo con bastante exactitud. Sus periodos oscilan de un día a cientos de días, siendo todos cientos de veces más luminosos que el Sol. Cuanto más largo sea el periodo de una variable cefeida, mayor será el brillo medio de la estrella. Esta relación entre el periodo y la luminosidad, descubierta por la astrónoma estadounidense Henrietta Leavitt, ha resultado inestimable para medir distancias estelares, en particular las de las galaxias cercanas. Para medir una distancia sólo se necesita observar el brillo medio aparente de una cefeida. Las novas y especialmente las supernovas también son medidas de distancia importantes porque su increíble brillantez en su luz máxima hace que se las pueda observar a distancias enormes.
    Las estrellas variables son de un interés extraordinario porque su variación suele producirse por alguna peculiaridad de su estructura interna que desarrolla con el tiempo. De este modo, las estrellas variables pueden aportar información sobre la evolución estelar. Por ejemplo, las supernovas han consumido su combustible nuclear y deben expulsar materia porque se hacen inestables cuando sufren un colapso gravitacional.
    {var_V975Cen_1.jpg}
    La variable eclipsante, mencionada en la sección anterior, cambia más por causas externas que por causas internas. Es típica la estrella Algol, en la constelación Perseo. Algol es una estrella doble formada por una componente brillante y otra más pálida que giran una alrededor de la otra en un plano casi en la línea de visión desde la Tierra. Cuando la componente más oscura eclipsa a la más brillante, el brillo aparente del par cae de modo abrupto; una disminución semejante pero menos marcada se da cuando la componente más brillante eclipsa a la más oscura. Los astrónomos han observado miles de variables eclipsantes, valiosas para medir las masas estelares.
    Constelaciones
    Una constelación es un área del cielo que contiene a ciertas estrellas. Estas estrellas forman una figura que le da nombre a la constelación. Las constelaciones son formaciones arbitrarias, y no existe una conexión real entre las estrellas que las forman, así, diferentes culturas le han asignado diferentes figuras y mitología a las mismas estrellas según su propia cosmovisión e historia.
    Muchas de las actuales constelaciones oficiales fueron establecidas por los antiguos griegos, principalmente por Ptolomeo. En el hemisferio sur celeste se encuentran las constelaciones más modernas, establecidas por los exploradores europeos, ya que desde las latitudes de Grecia no es posible observar cielos tan australes. Por eso en los cielos boreales tenemos a figuras mitológicas, como Hércules y Andrómeda, y en los cielos boreales se vieron representados elementos más modernos, como sextantes y microscopios.
    A su vez, las estrellas que forman una constelación se encuentran a distancias muy diferentes las unas de las otras, de tal forma que la figura que observamos desde las inmediaciones del Sol es una circunstancia local, ya que desde otro punto lejano del espacio (desde otra estrella diferente del Sol) la posición de las estrellas varia respecto a la posición en la que las observamos desde nuestro punto visual.
    Se acostumbra a separar las constelaciones en dos grupos, dependiendo el hemisferio celeste dónde se encuentren:
    constelaciones septentrionales, las ubicadas al norte del ecuador celeste
    constelaciones australes, al sur.
    A partir de 1928, la Unión Astronómica Internacional (UAI) decidió reagrupar oficialmente la esfera celeste en 88 constelaciones con límites precisos, tal que todo punto en el cielo quedara dentro de los límites de una figura. Antes de dicho año, eran reconocidas otras constelaciones menores que luego cayeron en el olvido; muchas, ya no se recuerdan. El trabajo de delimitación definitiva de las constelaciones fue llevado a cabo fundamentalmente por el astrónomo belga Eugène Joseph Delporte y publicado por la UAI en 1930.
    Zodiaco
    El zodíaco es una franja del cielo por donde, aparentemente, transitan el Sol y los planetas. Durante el siglo V a. C., dicha región fue dividida en 12 partes iguales (una por cada mes del año) a las cuales dieron el nombre de la constelación más próxima (grupos que muy bien podrían haber existido antes de la invención del Zodíaco propiamente). Estas constelaciones fueron las siguientes. Se ofrecen, primeramente, sus nombres en latín, que son los que se usan comúnmente, luego los nombres en español.
    Isaac Newton propuso la teoría de que los doce nombres de las antiquísimas constelaciones zodiacales rendían homenaje al mito de Jasón y los argonautas y su viaje en pos del vellocino de oro. Así Aries hace referencia al propio vellocino, Leo al héroe Heracles (Hércules romano), que vestía la piel del león de Citerón, Géminis a los gemelos Cástor y Pólux, Virgo a la sacerdotisa del templo donde se custodiaba el vellocino, etc.
    Aries: El carnero con el que viajaron Frixio y Hele, cuando salieron de su país natal para llegar a la Colquide. Fue posteriormente el vellocino de oro.
    Tauro: Existen dos versiones 1) El Toro de Creta, una bestia mítica que habitaba en aquella zona. 2) La forma que adoptó Zeus cuando raptó a Europa.
    Géminis: Los gemelos Cástor y Pólux. Pólux era inmortal, no así su hermano Cástor. Cuando Cástor murió, Pólux ofreció su inmortalidad por salvar a su hermano.
    Cáncer: El cangrejo que envió Hera a ayudar a la Hidra de Lerna, cuando ésta luchaba contra Hércules.
    Leo: El León de Nemea, muerto a manos de Hércules, que lo estranguló, pues su piel era impenetrable. El héroe lo despellejó con sus propias garras (lo único que podía herirlo) y se quedó la piel como su símbolo.
    Virgo: El mito es el de Astrea, titánide hija de Ceo y Febe, que aún habiendo tenido una relación amorosa con el también titán Perses, de cuya unión fue fruto Hécate (diosa de la Oscuridad y las Encrucijadas), resistió virtuosamente los devanéos de Zeus para no convertirse en otra aventura carnal del "tonante". A causa de esto fue convertida en una isla casi desierta y abandonada, Ortigia.
    Libra: Mito que se atribuye a Dice, la diosa de la Justicia, así como en antiguas representaciones romanas se ilustraba a Julio César portando una balanza, como símbolo de su poder y justicia. Más tarde se suprimiría al gobernante romano y se mantendría la figura de la balanza.
    Escorpio: Escorpión que la diosa Artemisa envió contra el gigante cazador Orión. Como Orión era un poco corto de mente, lo pisó y el escorpión le clavó el aguijón. Ambos murieron y Zeus puso a cada uno en frente del otro, para que no se peleasen.
    Sagitario: El centauro Quirón, médico de los médicos, cansado de su condición de inmortal, decidió cambiarla por la salvación de Prometeo. Cuando el trato estuvo formalizado, Prometeo le preguntó "¿Por qué lo has hecho? Ahora que estás muerto, por mucho que te canses, no vas a poder cambiarlo..."
    Capricornio: Representación de la Cabra Amaltea, la que amamantó a Zeus cuando su madre Rea lo escondió de la vista de su padre Cronos.
    Acuario: El joven Ganímedes, el escanciador de los dioses en el Olimpo. Un joven de extremada belleza que consiguió el amor del Dios Zeus.
    Piscis: Cuando los dioses huyeron del titán Tifón, muchos adoptaron formas animales. Ares y Afrodita lo hicieron en forma de peces y fueron pescados por un pescador. Otras fuentes dicen que fueron los malditos Cadmo y Harmonía los que fueron pescados.
    {antiguedad.jpg}
    Bibliografía
    http://www.surastronomico.com/constelaciones
    http://www.astromia.com/universo/supernovas.htm
    http://astronomiaconangelmeynet.blogspot.com/2011/06/las-estrellas-dobles-y-multiples.html
    http://www.todoelsistemasolar.com.ar/estrella.htm
    http://es.wikipedia.org/wiki/Estrella
    http://es.wikipedia.org/wiki/Zodiaco
    http://www.cienciafacil.com/paginaestrellas.html
    http://almaak.tripod.com/temas/constelaciones.htm

    (view changes)
    5:48 pm
  5. page Galaxias edited Galaxias Las galaxias son agrupaciones de miles de millones de estrellas. Nuestra propia galaxia,…
    Galaxias
    Las galaxias son agrupaciones de miles de millones de estrellas. Nuestra propia galaxia, es un ejemplo típico. Estrellas, gas y polvo interestelar orbitan alrededor del centro de la galaxia debido a la atracción gravitatoria de todas las demás estrellas. Nuevas generaciones de estrellas nacen a partir del gas que se condensa en regiones llamadas nubes moleculares gigantes y las estrellas, a veces, forman cúmulos de estrellas. Cuando una estrella alcanza el final de su evolución, puede devolver mucho gas al medio interestelar que será la fuente para una nueva generación de estrellas. Podemos imaginar a las galaxias como sistemas que transforman gas en estrellas y éstas nuevamente a gas.
    Cuando miramos una galaxia, la luz que vemos viene de dos fuentes. Primero, vemos luz de sus miles de millones de estrellas; puesto que muchas galaxias están muy lejanas, no vemos estrellas individuales - sólo la luz difusa combinada de todas. Segundo, vemos luz fluorescente emitida por el gas ionizado por las estrellas luminosas calientes. Estas nubes de gas resplandeciente marcan los sitios donde nacen nuevas estrellas - a menudo, suelen parecerse a las cuentas de un collar por la forma en que se encadenan en los brazos de las galaxias espirales. La luz de las estrellas y del gas es amortiguada, a una cierta distancia, por el polvo dentro del medio interestelar de la galaxia.
    Comparadas con el Sistema Solar, las galaxias son inmensas. Viajando a la velocidad de la luz, tomaría cerca de dos segundos ir de la Tierra a la Luna, y cerca de cinco horas y media, para ir del Sol a Plutón. Llevaría 25.000 años para ir desde el centro de la Vía Láctea a la posición del Sol. La Vía Láctea tiene más de cien mil millones de estrellas, pero las estrellas están tan lejos, unas de otras, que casi nunca colisionan. Incluso los pasos cercanos entre dos estrellas son sumamente excepcionales. Puesto que las estrellas raramente interactúan entre sí, sus órbitas, alrededor de la galaxia, raramente cambian. Las órbitas de las estrellas reflejan el movimiento del gas a partir del cual se formaron las estrellas. Por lo tanto, la forma de una galaxia nos habla de las condiciones en que se formó, salvo que la galaxia haya sufrido una colisión.
    Mientras que las estrellas dentro de una galaxia están separadas por distancias muy grandes comparadas con sus tamaños, las galaxias están separadas de sus vecinas más cercanas por distancias que son mucho más pequeñas cuando se comparan con las distancias entre las estrellas dentro de las galaxias. Así, no son inusuales las colisiones entre galaxias conforme éstas se mueven a través del espacio intergaláctico. Cuando las galaxias colisionan se penetran unas a otras y se producen choques de estrellas y las nubes de gas, en una galaxia, son comprimidas y frenadas por nubes de gas de la otra galaxia. Las órbitas de las estrellas pueden ser sustancialmente perturbadas (debido a la fuerza gravitacional que una galaxia ejerce sobre la otra) y la comprensión de las nubes de gas puede estimularlas a colapsar y formar estrellas con una tasa especialmente alta.
    Debido a que las estrellas en las galaxias están tan lejos, una señal de una galaxia es generalmente muy débil. Desde el patio posterior de su casa es difícil ver galaxias a simple vista, incluso las más cercanas. Las galaxias más brillantes y grandes son fáciles de identificar: son señales de luz con una gran variedad de formas, desde elípticas a espirales. Las muchas más numerosas galaxias débiles son más difíciles de encontrar. Es necesario buscar imágenes que son más borrosas y de contraste más bajo que las estrellas puntuales
    Clasificación de las Galaxias
    Existen muchos tipos diferentes de galaxias. Los diferentes tipos de galaxias no sólo parecen diferentes, sino que también tienen diferentes historias evolutivas. Las tres clases fundamentales de galaxias son elípticas, espirales e irregulares. Estas categorías se dividen a su vez en subclases, a menudo ilustradas usando el diagrama de diapasón de Hubble. Originalmente, los científicos pensaron que este diagrama podía haber representado una secuencia evolutiva de las galaxias, pero hoy sabemos que esto no es verdad. La formación y evolución de las galaxias es un proceso complejo que aún se entiende poco.
    Elípticas
    Las galaxias elípticas son llamadas así porque tienen formas elípticas: parecen huevos grandes borrosos o pelotas de rugby. Las estrellas, en las galaxias elípticas, no se esparcen en un disco delgado como ocurre en las galaxias espirales sino que se distribuyen alrededor del centro de la galaxia, uniformemente, en todas direcciones. Las elípticas tienen brillos que varían suavemente, disminuyendo gradual y constantemente, del centro hacia fuera. Si se observa una superficie con forma elíptica que rodea el centro de una galaxia elíptica, todas las estrellas, en esa superficie, tendrán brillos similares. Las galaxias elípticas son también, casi todas, del mismo color: algo más rojas que el Sol. En el diagrama de diapasón son clasificadas como E, seguidas de un número indicando cuán elíptica es una galaxia dada. Cuanto más alto el número, más elíptica, o sea, más larga que ancha.
    El color rojizo de las elípticas (así como también otras observaciones más detalladas) nos dice algo importante sobre sus historias. El color rojo de las galaxias viene de las estrellas más viejas y frías. El hecho de que la mayor parte de la luz proviene de estrellas viejas sugiere que muchas elípticas se formaron hace mucho tiempo. El hecho de que el color de una elíptica sea más o menos el mismo a través de la galaxia, sugiere que la mayoría de las estrellas, en estas galaxias, se formaron en la misma época.
    {elipticagalaxia.jpg}
    Además, muchas galaxias elípticas, en el universo, se encuentran cerca de otras galaxias elípticas, en cúmulos de galaxias. En estos cúmulos, cerca del 75% de las galaxias son elípticas. Esta acumulación también sugiere que se formaron hace mucho tiempo porque las galaxias probablemente se formaron primero en regiones de alta densidad como cúmulos de galaxia.
    Las galaxias más grandes, en el universo, son las galaxias elípticas gigantes. Ellas pueden contener un billón de estrellas, o más, y alcanzar un tamaño de unos dos millones de años luz -unas 20 veces el de la Vía Láctea -. Algunas de ellas parecen contener agujeros negros súper masivos en sus corazones - monstruos que engullen estrellas, que son hasta tres mil millones de veces más pesados que el Sol -. Estas galaxias elípticas gigantes están en los corazones de los cúmulos de galaxias.
    Las galaxias elípticas y los bultos de las espirales han sido el sujeto de varias décadas de trabajo observacional y teórico. Durante décadas, los astrónomos pensaron que la rata de rotación de estos sistemas estelares esféricos determinaba si serían de forma redondeada u ovalada, con las elípticas de más rápida rotación siendo las más planas.
    Detallados estudios de miles de elípticas durante los años, ahora sugieren una imagen completamente distinta. Las elípticas y los bultos son soportados en contra de su propia gravedad, lo que causaría que se encogieran, debido al movimiento aleatorio de las estrellas, bastante como el movimiento de las moléculas en un gas caliente. La distribución del movimiento estelar determina la forma final de la galaxia, esto es, si es esférica, ovalada, o muy aplanada.
    En los últimos años, los astrónomos también han descubierto que formas de galaxias aparentemente simples, ocultan los complejos y violentos eventos que ocurrieron hace mucho en estas galaxias.
    Algunas contienen densos núcleos en los que millones de estrellas se mueven en órbitas completamente diferentes de las de las estrellas más alejadas del centro de la galaxia.
    En muchas formas, los núcleos de algunas se asemejan a poblaciones aisladas trasplantadas desde afuera de la galaxia. Los astrónomos están comenzando a pensar que estos núcleos son los restos de galaxias compañeras que fueron consumidas cuando se acercaron demasiado a estas galaxias elípticas, hace muchos millones de años. Cuando las galaxias chocan, los campos gravitatorios rápidamente cambiantes también pueden sincronizar las órbitas estelares, creando los grandes anillos de estrellas que rodean como halos a algunas galaxias elípticas.
    Las galaxias elípticas también contienen algunas de las más antiguas estrellas en el universo. Mientras las elípticas y espirales continúan produciendo nuevas estrellas, incluso hasta nuestros días, la mayoría de las elípticas dejaron de formar estrellas hace más de 10.000 millones de años, durante lo que debe haber sido una gran época de formación estelar.
    Las elípticas contienen poco o ningún gas o polvo propio, aparentemente habiendo consumido él que tenían, hace mucho, cuando sus estrellas nacieron.
    Aquellas elípticas que contienen mayores concentraciones de gas y polvo, aparentemente acumularon el material porque canibalizaron a sus galaxias compañeras.
    El material acumulado de estas canalizaciones, se comprime a medida que hunde más y más en el núcleo de la galaxia, y en muchos casos, crea nuevas generaciones de estrellas masivas y luminosas.
    Eventualmente durante el curso de millones de años, el gas alcanza el centro de la galaxia, donde agujeros negros súper-masivos podrían esperar al acecho por un nuevo suministro de combustible.
    Espiral
    Una galaxia espiral es un tipo de galaxia de la secuencia de Hubble que se caracteriza por las siguientes propiedades físicas:
    Tiene un momento angular total considerable.
    Está compuesta por una concentración de estrellas central rodeada por un disco.
    El núcleo central es similar a una galaxia elíptica, conteniendo numerosas estrellas antiguas, llamadas "Población II", y normalmente un agujero negro supermasivo en el centro.
    El disco es plano y está formado por materia interestelar, estrellas jóvenes "Población I" y cúmulos abiertos.
    Las galaxias espirales deben su nombre a los brazos luminosos con formación estelar dentro del disco que se prolonga más o menos logarítmicamente desde el núcleo central. Aunque a veces son difíciles de percibir, estos brazos las distinguen de las galaxias lenticulares, que presentan una estructura de disco pero sin brazos espirales.
    El disco de las galaxias espirales suele estar rodeado por grandes aureolas esferoides de estrellas de Población II, muchas de las cuales se concentran en cúmulos globulares que orbitan alrededor del centro galáctico.
    {m31galaxiaespiral.jpg}
    Origen de la estructura espiral: Los primeros estudios sobre la formación de los brazos espirales corresponden a Bertil Lindblad. Se dio cuenta de que las estrellas no pueden estar organizadas en forma de espiral de manera permanente. Puesto que la velocidad de rotación del disco galáctico varía con la distancia al centro de la galaxia, un brazo radial rápidamente se vería curvado al rotar la galaxia. El brazo, tras unas pocas rotaciones, incrementaría la curvatura enrollándose cada vez más en la galaxia. Esto no es lo que se observa.
    Explicación de los brazos de las galaxias espirales: la primera teoría admisible fue ideada por C. C. Lin y Frank Shu en 1964. Sugirieron que los brazos espirales eran manifestaciones de ondas de densidad espirales. Supusieron que las estrellas se desplazan en órbitas ligeramente elípticas y que la orientación de sus órbitas está correlacionada, esto es, las órbitas elípticas varían su orientación, unas de otras, ligeramente con el incremento de la distancia al centro galáctico, tal como se observa en el diagrama. Estas órbitas están más cercanas en algunas áreas presentando el efecto de parecer brazos. Las estrellas no permanecen siempre en la posición en que las vemos, sino que pasan por los brazos al desplazarse en sus órbitas.
    Se han propuesto hipótesis alternativas que implican ondas de formación estelar desplazándose por la galaxia; las estrellas brillantes producidas en la formación estelar mueren rápidamente, dejando regiones más oscuras tras la onda y, por tanto, haciendo esta visible. Las galaxias espirales poseen muchas estrellas jóvenes, situadas en los brazos espirales pletóricos de gas hidrógeno frío, polvo interestelar (principalmente carbono) y dispersión de moléculas de dióxido de carbono, agua y formaldehído, combustibles de futuras estrellas; (a las estrellas que corresponden los brazos espirales las llamaremos de Población I)
    Irregulares
    La última clase de galaxias, "irregulares", contiene una mezcla de formas -algo que no parece ni espiral ni elíptica-. Cualquier galaxia de forma no identificada - cuyas estrellas, gas y polvo se esparcen al azar- se clasifica como irregular. Las irregulares son las galaxias más pequeñas, y pueden contener no más de un millón de estrellas. Pueden ser los ladrillos para formar las primeras galaxias grandes. Muchas galaxias irregulares pequeñas orbitan la Vía Láctea, incluyendo a las Nubes Mayor y Menor de Magallanes.
    {000191674.png} Cuando Hubble estableció su clasificación de las galaxias se intentó interpretarla como un proceso evolutivo. Las galaxias comenzarían como elípticas y evolucionarían hacia espirales, de modo que las primeras serían las más jóvenes y las espirales las más viejas.
    Hoy más bien pensamos que todas las galaxias o casi todas, se formaron al mismo tiempo y que sus diferencias son causa de las distintas evoluciones que han seguido
    Bibliografía
    http://www.astroaspe.es/
    http://cas.sdss.org/dr7/sp/astro/galaxies/galaxies.asp
    http://xtec.net/~rmolins1/univers/es/galaxias.htm
    http://www.todoelsistemasolar.com.ar/galaxia.htm
    http://www.astrodomi.com.ar/universo/galaxias/galaxias.htm

    (view changes)
    5:45 pm

More